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Abstract:
Humans demonstrate a large variety of very complicated motor skills in their day-to-day
life. Their agility and adaptability to new control task remains unmatched by the millions
of robots laboring on factory floors and roaming research labs. Achieving the abilities
of learning and improving new motor skills has become an essential component in order
to get a step closer to human-like motor skills. If future robots could acquire their basic
task by imitating human demonstrations and subsequently self-improve by trial and error,
such robot learning would result into more interesting robot applications as well as large
productivity gains in industry.

Recent progress in the area of machine learning has yielded several important tools for
making progress towards this vision for the future. Two of these recent developments are
a novel framework for representing motor primitives using dynamical systems presented
in [Ijspeert et al., 2002a,b, 2003, Schaal et al., 2004] and the reduction of reward-related
self-improvement to reward-weighted regression by Peters and Schaal [2006c, 2007b]. To
date, these two important methods have only been used separately in robot learning; when
using them in combination, this could yield a strong basis for learning motor skills.

In this diploma thesis, the task of ball-in-a-cup or balero was chosen as a target evaluation
platform for the proposed method. We will start by first implementing a simulation
platform for the balero task in the physically realistic robot simulator SL [Schaal, 2004].
Subsequently, we obtain human presentations of the task using a VICONTM motion
capture system. This data is used for imitations learning and we will show that several very
different basic movements exist which can fulfill the task. We implement the framework
of motor primitives based on dynamical systems, adapt it for applicability to our task
and subsequently discuss how the suggested learning framework works in toy applications.
Using the physically realistic simulation, we evaluate our resulting framework in simulation
and test it extensively. Final evaluations are planned to take place on a high-speed Barret
WAMTM robot arm using a 200Hz vision setup which is currently being created at the
Max-Planck Institute for Biological Cybernetics.
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Zusammenfassung

Bewegungsprimitive, die auf dynamischen Modellen beruhen [Ijspeert et al., 2002a], haben
ermöglicht, dass Roboter komplexe Aufgaben von Tennisschlägen bis hin zum Robotergehen
durch überwachtes Lernen beziehungsweise Regression lernen. Jedoch sind die meisten
interessanten Lernprobleme hochdimensionale Reinforcement-Learning-Probleme (Bestärk-
endes Lernen), die oft mit den gängigen Methoden nicht gelöst werden können. Ergebnisse
[Peters and Schaal, 2006b] zu Reinforcement-Learning mit unmittelbarer Bewertung werden
für den episodischen Fall erweitert. Ein neuer Strategie-Lernalgorithmus wird hergeleitet,
indem eine Form der Exploration verwendet wird, die besonders gut für Bewegungsprimitive
geeignet ist. Der resultierende Algorithmus ist an Expectation-Maximization-Algorithmen
angelehnt und lässt sich für das Lernen von komplexen Bewegungen einsetzen. Dieser
Algorithmus wird mit mehreren bekannten Lernalgorithmen für parametrierte Strategien
verglichen und es wird gezeigt, dass der neue Algorithmus diese sowie in Lerngeschwindigkeit
als auch Endergebnis übertrifft. Der Algorithmus wird für das Lernen von Bewegungen
verwendet und es wird gezeigt, dass damit die komplexe Bewegung des Spiels „Fangbecher“
auf einem realen Barrett WAMTM Roboterarm gelernt werden kann.

Die gelernten Steuerungs-Primitive können sehr empfindlich gegenüber Störeinflüssen
bezüglich der Anfangsbedingungen oder der Trajektorie selbst sein. Um diese Störeinflüsse
zu unterdrücken, ist die Rückführung der Wahrnehmung entscheidend. Jedoch gibt es bis
jetzt nur wenige Ansätze, die Bewegungsprimitive um Wahrnehmungsrückführung von
Variablen mit externem Fokus [Pongas et al., 2005] zu erweitern. Zudem beruhen diese
Modifikationen auf Lösungen, die von Hand implementiert werden müssen. Menschen
lernen, wie sie ihre Bewegungsprimitive bezüglich externer Variablen anpassen müssen. Es
ist offensichtlich, dass eine solche Lösung in der Robotik benötigt wird. Daher wird eine Er-
weiterung der auf dynamischen Modellen basierenden Bewegungsprimitive entworfen, welche
Wahrnehmungsrückführung integriert. Die daraus resultierenden Bewegungsprimitive, die
von der Wahrnehmung beeinflusst werden, enthalten die ursprünglichen Bewegungsprimi-
tive als Sonderfall und können so viele vorteilhafte Eigenschaften derer beibehalten. Es
wird gezeigt, dass diese erweiterten Bewegungsprimitive komplexe Bewegungen wie das
Fangbecherspiel sogar mit einer so großen Varianz in den Anfangsbedingungen meistern
können, dass sie für einen geübten menschlichen Spieler eine Herausforderung wären. Um
dies zu erreichen, werden die Bewegungsprimitive klassisch mit Imitationslernen ohne
Wahrnehmungsrückführung initialisiert. Dann wird die Effizienz der Bewegungsprimitive
mit der neuen Reinforcement-Learning-Methode verbessert.

vii



Abstract

Motor primitives based on dynamical systems [Ijspeert et al., 2002a] have enabled robots
to learn complex tasks ranging from tennis-swings to legged locomotion. However, most
interesting motor learning problems are high-dimensional reinforcement learning problems
often beyond the reach of current methods. We extend previous work [Peters and Schaal,
2006b] on policy learning from the immediate reward case to episodic reinforcement learning.
We present a novel algorithm for policy learning by assuming a form of exploration that
is particularly well-suited for dynamic motor primitives. The resulting algorithm is an
EM-inspired algorithm applicable in complex motor learning tasks. We compare this
algorithm to several well-known parametrized policy search methods and show that it
outperforms them. We apply it in the context of motor learning and show that it can learn
a complex Ball-in-a-Cup task using a real Barrett WAMTM robot arm.

The learned open loop policy trajectory can be very sensitive to perturbations of the
initial conditions or the trajectory. Perceptual coupling is a natural choice to cancel
these perturbations. However, to date there have been only few extensions which have
incorporated perceptual coupling to variables of external focus [Pongas et al., 2005], and,
furthermore, these modifications have relied upon handcrafted solutions. Humans learn
how to couple their movement primitives with external variables. Clearly, such a solution
is needed in robotics. We propose an augmented version of the motor primitives based
on dynamical systems which incorporates perceptual coupling to an external variable.
The resulting perceptually driven motor primitives include the previous primitives as a
special case and can inherit some of their interesting properties. We show that these motor
primitives can perform complex tasks such as Ball-in-a-Cup even with large variances in
the initial conditions where a skilled human player would be challenged. For doing so,
we initialize the motor primitives in the traditional way by imitation learning without
perceptual coupling. Subsequently, we improve the motor primitives using our novel
reinforcement learning method.
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1 Introduction

Policy search, also known as policy learning, has become an accepted alternative of
value function-based reinforcement learning [Bagnell et al., 2003, Strens and Moore,
2001, Kwee et al., 2001, Peshkin, 2001, El-Fakdi et al., 2006, Taylor et al., 2007].
In high-dimensional domains with continuous states and actions, such as robotics,
this approach has previously proven successful as it allows the usage of domain-
appropriate pre-structured policies, the straightforward integration of a teacher’s
presentation as well as fast online learning [Bagnell et al., 2003, Ng and Jordan,
2000, Peters and Schaal, 2006b, 2007b, Toussaint and Goerick, 2007, Hoffman et al.,
2007, Guenter et al., 2007]. In this diploma thesis, we will extend the previous work
in [Dayan and Hinton, 1997, Peters and Schaal, 2007b] from the immediate reward
case to episodic reinforcement learning and show how it relates to policy gradient
methods [Williams, 1992, Sutton et al., 2000, Lawrence et al., 2003, Tedrake et al.,
2004, Peters and Schaal, 2006b]. Despite that many real-world motor learning tasks
are essentially episodic [Wulf, 2007], episodic reinforcement learning [Sutton and
Barto, 1998] is a largely undersubscribed topic. The resulting framework allows us
to derive a new algorithm called Policy Learning by Weighting Exploration with
the Returns (PoWER) which relies on a different stochastic policy than previous
approaches. Instead of using additive state-independent, white Gaussian exploration
in our motor command, we employ a state-dependent exploration strategy which is
particularly well-suited for turning deterministic motor control policies into stochastic
policies. We are especially interested in a particular kind of motor control policies
also known as dynamic motor primitives [Ijspeert et al., 2003, Schaal et al., 2007]. In
this approach, dynamical systems are being used in order to encode a policy, i.e., we
have a special kind of parametrized policy which is well-suited for robotics problems.

The recent introduction of these motor primitives based on dynamical systems
[Ijspeert et al., 2002a, 2003, Schaal et al., 2003, 2007] have allowed both imitation
learning and reinforcement learning to acquire new behaviors fast and reliable.
Resulting successes have shown that it is possible to rapidly learn motor primitives for
complex behaviors such as tennis swings [Ijspeert et al., 2002a, 2003], T-ball batting
[Peters and Schaal, 2006b], drumming [Pongas et al., 2005], biped locomotion [Schaal
et al., 2003, Nakanishi et al., 2004b] and even in tasks with potential industrial
application [Urbanek et al., 2004]. However, in their current form these motor
primitives are generated in such a way that they are either only coupled to internal
variables [Ijspeert et al., 2002a, 2003] or only include manually tuned phase-locking,
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1 Introduction

e.g., with an external beat [Pongas et al., 2005] or between the gait-generating
primitive and the contact time of the feet [Schaal et al., 2003, Nakanishi et al., 2004b].
In many human motor control tasks, more complex perceptual coupling is needed in
order to perform the task. Using handcrafted coupling based on human insight will
in most cases no longer suffice.
In this diploma thesis, it is our goal to augment the Ijspeert-Nakanishi-Schaal
approach [Ijspeert et al., 2002a, 2003] of using dynamical systems as motor primitives
in such a way that it includes perceptual coupling with external variables. Similar
to the biokinesiological literature on motor learning (see e.g., [Wulf, 2007]), we
assume that there is an object of internal focus described by a state x and one of
external focus y. The coupling between both foci usually depends on the phase of
the movement and, sometimes, the coupling only exists in short phases, e.g., in a
catching movement, this could be at initiation of the movement (which is largely
predictive) and during the last moment when the object is close to the hand (which
is largely prospective or reactive and includes movement correction). Often, it is also
important that the internal focus is in a different space than the external one. Fast
movements, such as a Tennis-swing, always follow a similar pattern in joint-space
of the arm while the external focus is usually on an object in Cartesian space or
fovea-space. As a result, we have augmented the motor primitive framework in such
a way that the coupling to the external, perceptual focus is phase-variant and both
foci y and x can be in completely different spaces.
We show that the presented algorithm (PoWER) works well when employed in the
context of learning dynamic motor primitives in four different settings, i.e., the two
benchmark problems from [Peters and Schaal, 2006b], the Underactuated Swing-Up
[Atkeson, 1994] and the complex task of Ball-in-a-Cup [Wikipedia, 2008a, Kawato
et al., 1994]. Both the Underactuated Swing-Up as well as the Ball-in-a-Cup are
achieved on a real Barrett WAMTM robot arm. Looking at these tasks from a human
motor learning perspective, we have a human acting as teacher presenting an example
for imitation learning and, subsequently, the policy will be improved by reinforcement
learning. Since such tasks are inherently single-stroke movements, we focus on the
special class of episodic reinforcement learning. In our experiments, we show how a
presented movement which is recorded using kinesthetic teach-in or motion capture
and, subsequently, how a Barrett WAMTM robot arm is learning the behavior by a
combination of imitation and reinforcement learning.
Integrating perceptual coupling requires additional function approximation, and, as
a result, the number of parameters of the motor primitives grows significantly. It
becomes increasingly harder to manually tune these parameters to high performance
and a learning approach for perceptual coupling is needed. The need for learning
perceptual coupling in motor primitives has long been recognized in the motor
primitive community [Schaal et al., 2007]. However, learning perceptual coupling
to an external variable is not as straightforward. It requires many rollouts in
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1 Introduction

order to properly determine the connections from external to internal focus. It is
straightforward to grasp a general movement by imitation and a human can produce
a Ball-in-a-Cup movement or a Tennis-swing after a single or few observed trials of
a teacher but he will never have a robust coupling to the ball. Furthermore, small
differences between the kinematics of teacher and student amplify in the perceptual
coupling. This part is the reason why perceptually driven motor primitives can
be initialized by imitation learning but will usually require self-improvement by
reinforcement learning. This approach is analogous to the case of a human learning
tennis: a teacher can present a forehand to the human student but a lot of self-
practice is needed for a proper tennis game. We again use PoWER to learn the
parameters for the perceptual coupling.

The outline of this diploma-thesis is shown in Figure 1.1. In Section 2 we introduce
a framework for episodic reinforcement learning algorithms. Using this approach we
derive the policy gradient theorem [Sutton et al., 2000], a generalization of the reward-
weighted regression [Peters and Schaal, 2007b] as well as the novel Policy learning
by Weighting Exploration with the Returns (PoWER) algorithm. In Section 3, we
discuss the [Ijspeert et al., 2002a, 2003, Schaal et al., 2007] motor primitives based
on dynamical systems as well as our augmentation for perceptual coupling. We also
analyze a suitable imitation learning algorithm and how reinforcement learning can
be applied. The evaluations in Section 4 are employing the reinforcement learning
algorithm derived in Section 2 using motor primitives, described in Section 3, as
parametrized policy. For the reinforcement learning comparison, we study two
benchmark problems with the introduced algorithms and Ball-in-a-Cup with our
novel method. Perceptual coupling is evaluated for the Ball-in-a-Cup example. The
evaluations are done in simulation and on a real Barrett WAMTM robot arm.

Ball-in-a-Cup or Kendama (see Section 4.4) has previously been studied in robotics.
Takenaka [1984] used a three degree of freedom robot that is moving on a plane to
perform Ball-in-a-Cup. The robot is controlled by a trajectory tracking controller
based on a mathematical model. The trajectory of the end effector is taken from
human patterns. Cameras are used for nonlinear compensations. Sakaguchi and
Miyazaki [1994], Sato et al. [1993] take a distinctively different approach without
imitation learning. They use a two degree of freedom robot (also moving on a plane)
that receives feedback from force sensors (which corresponds to playing Ball-in-a-Cup
with eyes closed). A model of the pendulum is given. The motion planning is divided
in sub tasks. First, the robot performs some movements in order to estimate the
parameters of the model (mass and string length). Subsequently the parameters
for the trajectory are calculated based on the model. Finally, the trajectory is
optimized based on this feedback. Miyamoto et al. [1996] used a seven degree of
freedom anthropomorphic arm. They record human motions which is used to train a
neural network to reconstruct via-points. The imitation is designed to match the
Cartesian coordinates exactly and the joints as closely as possible. The motion is

4



performed open-loop and visual feedback is used to improve the trajectory using a
Newton-like algorithm. Shone et al. [2000] construct a simple one degree of freedom
robot particularly for Ball-in-a-Cup. The trajectory is found using a gradient based
path planner in simulation. Ball-in-a-Cup is modeled as pendulum switching to a
free point mass. The found trajectory is executed on the real system, which only has
the motor encoders as feedback. There exists also further related work: Fujii et al.
[1993] model Kendama using a number of approximations (string as line segments,
no string tension), Arisumi et al. [2005] use a casting manipulator to throw the ball
on the spike. Ball-in-a-Cup has also been studied in space by NASA [Sumners, 1997]
for educational purposes and is used to study the relation of sleep and learning by
Milner et al. [2006], Fogel and Smith [2006].
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2 Reinforcement Learning

Our goal is to find reinforcement learning techniques that can be applied to a special
kind of pre-structured parametrized policies called motor primitives [Ijspeert et al.,
2003, Schaal et al., 2007] (also described in Section 3.1), in the context of learning
high-dimensional motor control tasks. In order to do so, we first discuss our problem
in the general context of reinforcement learning and introduce the required notation
in Section 2.1. Using a generalization of the approach in [Dayan and Hinton, 1997,
Peters and Schaal, 2007b], we derive a new expectation-maximization (EM) inspired
algorithm [Dempster et al., 1977] called Policy Learning by Weighting Exploration
with the Returns (PoWER) in Section 2.3 and show how the general framework is
related to policy gradients methods in 2.2. Attias [2003] extends the [Dayan and
Hinton, 1997] algorithm to episodic reinforcement learning for discrete states; we
use continuous states. Subsequently, we discuss how we can turn the parametrized
motor primitives [Ijspeert et al., 2003, Schaal et al., 2007] into stochastic policies. For
doing so, we do not follow previous work which perturbs motor commands based on
additive, state-independent exploration [Williams, 1992, Guenter et al., 2007, Peters
and Schaal, 2006b] but instead use a state dependent exploration which allows the
derivation of algorithms with faster convergence to optimal solutions.

2.1 Problem Statement & Notation

In this diploma thesis, we treat motor primitive learning problems in the framework
of reinforcement learning with a strong focus on the episodic case [Sutton and Barto,
1998]. We assume that at time t there is an actor in a state st and chooses an
appropriate action at according to a stochastic policy π(at|st, t). Such a policy
is a probability distribution over actions given the current state. The stochastic
formulation allows a natural incorporation of exploration and, in the case of hidden
state variables, the optimal time-invariant policy has been shown to be stochastic
[Sutton et al., 2000]. Upon the completion of the action, the actor transfers to
a state st+1 and receives a reward rt. As we are interested in learning complex
motor tasks consisting of a single stroke [Schaal et al., 2007], we focus on finite
horizons of length T with episodic restarts [Sutton and Barto, 1998] and learn the
optimal parametrized, stochastic policy for such reinforcement learning problems.
We assume an explorative version of the dynamic motor primitives [Ijspeert et al.,

7



2 Reinforcement Learning

Figure 2.1: This illustration shows a planar robot with two degrees of freedom. In this
example the states s = [q1, q̇1, q2, q̇2, bx, ḃx, by, ḃy] include the joint angles qn and the angular
joint velocities q̇n as well as the Cartesian positions bn and velocities ḃn of an external
object. The states describe the momentary state of the system. Actions a = [u1, u2], which
correspond to motor torques, are used to influence the system.

2003, Schaal et al., 2007] (see Section 3.1) as parametrized policy π with parameters
θ ∈ Rn. However, in this section, we will keep most derivations sufficiently general
that they would transfer to various other parametrized policies. The general goal
in reinforcement learning is to optimize the expected return of the policy π with
parameters θ defined by

J(θ) =
ˆ

T
p(τ )R(τ )dτ , (2.1)

where T is the set of all possible paths, rollout τ = [s1:T+1, a1:T ] (also called episode
or trial) denotes a path of states s1:T+1 = [s1, s2, . . ., sT+1] and actions a1:T = [a1,
a2, . . ., aT ]. The probability of rollout τ is denoted by p(τ ) while R(τ ) refers to its
return. Using the standard assumptions of Markovness and additive accumulated
rewards, we can write

p(τ ) = p (s1)
T∏
t=1
p (st+1|st, at) π (at|st, t) , (2.2)

R(τ ) = T−1
T∑
t=1
r (st, at, st+1, t) , (2.3)

where p(s1) denotes the initial state distribution, p(st+1|st, at) the next state distribu-
tion conditioned on last state and action, and r(st, at, st+1, t) denotes the immediate
reward. See Figures 2.1 and 2.2 for illustrations.
While episodic reinforcement learning (RL) problems with finite horizons are common
in motor control, few methods exist in the RL literature, e.g., Episodic REINFORCE
[Williams, 1992], the Episodic Natural Actor Critic eNAC [Peters and Schaal, 2006b]

8



2.2 Episodic Policy Learning

Figure 2.2: Starting at state st action at is applied.
This results in state st+1 in the next time step. States
are summarized as s1:T+1 = [s1, s2, . . . , sT+1] and ac-
tions as a1:T = [a1, a2, . . . , aT ]. The combined in-
formation from states and actions is called rollout
τ = [s1:T+1,a1:T ]. A reward rt, based on the values
of st, at, st+1 and t, is given in each time step. The
rewards are summarized as r1:T = [r1, r2, . . . , rT ]. The
policy π(at|st, t), which is a probability distribution
dependent on the current state and time step, describes
the next action. We use a parametrized policy with
parameters θ ∈ Rn.

and model-based methods using differential-dynamic programming [Atkeson, 1994].
Nevertheless, in the analytically tractable cases, it has been studied deeply in
the optimal control community where it is well-known that for a finite horizon
problem, the optimal solution is non-stationary [Kirk, 1970] and, in general, cannot be
represented by a time-independent policy. The motor primitives based on dynamical
systems [Ijspeert et al., 2003, Schaal et al., 2007] are a particular type of time-variant
policy representation as they have an internal phase which corresponds to a clock with
additional flexibility (e.g., for incorporating coupling effects, perceptual influences,
etc.), thus, they can represent optimal solutions for finite horizons. We embed this
internal clock or movement phase into our state and, thus, from optimal control
perspective have ensured that the optimal solution can be represented.

2.2 Episodic Policy Learning

In this section, we discuss episodic reinforcement learning in policy space which
we will refer to as Episodic Policy Learning. For doing so, we first discuss the
lower bound on the expected return suggested in [Dayan and Hinton, 1997] for
guaranteeing that policy update steps are improvements. In [Dayan and Hinton,
1997, Peters and Schaal, 2007b] only the immediate reward case is being discussed,
we extend their framework to episodic reinforcement learning and, subsequently,
derive a general update rule which yields the policy gradient theorem [Sutton et al.,
2000], a generalization of the reward-weighted regression [Peters and Schaal, 2007b]
as well as the novel Policy learning by Weighting Exploration with the Returns
(PoWER) algorithm.

9



2 Reinforcement Learning

Figure 2.3: This figure shows an illustration of the maximization of the lower bounds
(black) and the resulting parameter updates (green).

2.2.1 Bounds on Policy Improvements

Unlike in reinforcement learning, most other machine learning branches have focused
on optimizing lower bounds, e.g., resulting in expectation-maximization (EM) al-
gorithms [McLachan and Krishnan, 1997]. The reasons for this preference apply
in policy learning: if the lower bound also becomes an equality for the sampling
policy, we can guarantee that the policy will be improved by optimizing the lower
bound. Surprisingly, results from supervised learning can be transferred with ease.
For doing so, we follow the scenario suggested in [Dayan and Hinton, 1997], i.e.,
generate rollouts τ using the current policy with parameters θ which we weight with
the returns R (τ ) and subsequently match it with a new policy parametrized by θ′.
This matching of the success-weighted path distribution is equivalent to minimiz-
ing the Kullback-Leibler divergence D (pθ′ (τ ) ‖pθ (τ ) r (τ )) between the new path
distribution pθ′ (τ ) and the reward-weighted previous one pθ (τ ) r (τ ). As shown in
[Dayan and Hinton, 1997, Peters and Schaal, 2007b], this results in a lower bound
on the expected return using Jensen’s inequality and the concavity of the logarithm,
i.e.,

log J(θ′) = log
ˆ

T

pθ (τ )
pθ (τ )pθ

′ (τ )R (τ ) dτ , (2.4)

≥
ˆ

T
pθ (τ )R (τ ) log pθ

′ (τ )
pθ (τ ) dτ + const, (2.5)

∝ −D (pθ′ (τ ) ‖pθ (τ )R (τ )) = Lθ(θ′), (2.6)

where
D (p (τ ) ‖q (τ )) =

ˆ
p (τ ) log

(
p (τ )
q (τ )

)
dτ (2.7)

is the Kullback-Leibler divergence which is considered a natural distance measure
between probability distributions, and the constant is needed for tightness of the

10



2.2 Episodic Policy Learning

bound. Note that pθ (τ )R (τ ) is an improper probability distribution as pointed
out in [Dayan and Hinton, 1997]. Maximizing the lower bound on the expected
return Lθ(θ′) = −D (pθ′ (τ ) ‖pθ (τ )R (τ )) is the essential step when improving a
policy and we will show the relation to different previous policy learning methods in
Section 2.2.2. See Figure 2.3 for an illustration.

2.2.2 Resulting Policy Updates

In the following part, we will discuss three different policy updates which directly
result from Section 2.2.1. First, we show that policy gradients [Williams, 1992, Sutton
et al., 2000, Lawrence et al., 2003, Tedrake et al., 2004, Peters and Schaal, 2006b]
can be derived from the lower bound Lθ(θ′). Subsequently, we show that natural
policy gradients [Peters and Schaal, 2006b] can be seen as an additional constraint
regularizing the change in the path distribution resulting from a policy update
when improving the policy incrementally. Finally, we will show how expectation-
maximization (EM) algorithms for policy learning can be generated.

Policy Gradients. When differentiating the function Lθ(θ′) that defines the lower
bound on the expected return, we directly obtain

∂θ′Lθ(θ′) =
ˆ

T
pθ (τ )R (τ ) ∂θ log pθ′ (τ ) dτ , (2.8)

where T is the set of all possible paths and

∂θ log pθ′ (τ ) =
T∑
t=1
∂θ log π (at|st, t) (2.9)

denotes the log-derivative of the path distribution. As this log-derivative only depends
on the policy, we can estimate a gradient from roll-outs without having a model
by simply replacing the expectation by a sum; when θ′ is close to θ, we have the
policy gradient estimator which is widely known as Episodic REINFORCE [Williams,
1992], i.e., we have limθ′→θ ∂θ′Lθ(θ′) = ∂θJ(θ). Obviously, a reward which precedes
an action in an rollout, can neither be caused by the action nor cause an action in
the same rollout. Thus, when inserting Equations (2.2,2.3) into Equation (2.8), all
cross-products between rt and ∂θ log π(at+δt|st+δt, t+ δt) for δt > 0 become zero in
expectation [Peters and Schaal, 2006b]. Therefore, we can omit these terms and
rewrite the estimator as

∂θ′Lθ
(
θ′
)

= E

{
T∑
t=1
∂θ log π (at|st, t)Qπ (s, a, t)

}
, (2.10)
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Algorithm 2.1 Finite Difference Gradients (FDG)

Input: initial policy parameters θ0

repeat

Generate policy variations:
∆θh ∼ U[−∆θmin,∆θmax]

for h = {1, . . . ,H} rollouts.

Sample:
Perform h = {1, . . . ,H} rollouts using

a =
(
θ + ∆θh

)T
φ (s, t)

as policy and collect all(
t, sht ,aht , sht+1, ε

h
t , r

h
t+1

)
for t = {1, 2, . . . , T + 1} .

Compute:
Return

Rh
(
θ + ∆θh

)
=

T+1∑
t=1

rht

from rollouts.

Compute Gradient: [
gT

FD , Rref
]T

=
(
∆ΘT∆Θ

)−1
∆ΘTR

with ∆Θ =
[

∆θ1, . . . , ∆θH
1, . . . , 1

]T

and R =
[
R1, . . . , RH

]T
.

Update:
policy using

θk+1 = θk + αgFD.

until Convergence θk+1 ≈ θk.
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2.2 Episodic Policy Learning

Algorithm 2.2 ‘Vanilla’ Policy Gradients (VPG)

Input: initial policy parameters θ0

repeat

Sample:
Perform h = {1, . . . ,H} rollouts using

a = θTφ (s, t) + εt

with [εnt ] ∼ N
(

0,
(
σh,n

)2
)

as stochastic policy and collect all(
t, sht ,aht , sht+1, ε

h
t , r

h
t+1

)
for t = {1, 2, . . . , T + 1} .

Compute:
Return

Rh =
T+1∑
t=1

rht ,

eligibility

ψh,n =
∂ log p

(
τ h
)

∂θn
=

T∑
t=1

∂ log π
(
aht |sht , t

)
∂θn

=
T∑
t=1

1(
σnh
)2 εh,nt φn

(
sh,nt , t

)
and baseline

bn =

H∑
h=1

(
ψh,n

)2
Rh

H∑
h=1

(ψh,n)2

for each parameter n = {1, . . . , N} from rollouts.

Compute Gradient:

gnVP = E

∂ log p
(
τ h
)

∂θn

(
r
(
τ h
)
− bn

) = 1
H

H∑
h=1

ψh,n
(
Rh − bn

)
.

Update:
policy using

θk+1 = θk + αgVP.

until Convergence θk+1 ≈ θk.
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where

Qπ (s, a, t) = E


T∑
t̃=t
r
(
st̃, at̃, st̃+1, t̃

)
|st = s, at = a

 (2.11)

is called the state-action value function [Sutton and Barto, 1998]. Equation (2.10)
is equivalent to the policy gradient theorem [Sutton et al., 2000] for θ′ → θ in the
infinite horizon case where the dependence on time t can be dropped. [Binder et al.,
1997] also show from a different perspective the equivalence of Generalized EM and
Gradient Descent. See Algorithms 2.1 and 2.2 for exemplary implementations.
The derivation results in the Natural Actor Critic as discussed in [Bagnell and
Schneider, 2003, Peters et al., 2003a, 2005, Peters and Schaal, 2006b, 2008b] when
adding an additional punishment to prevent large steps away from the observed path
distribution. This can be achieved by restricting the amount of change in the path
distribution and, subsequently, determining the steepest descent for a fixed step
away from the observed trajectories. Change in probability distributions is naturally
measured using the Kullback-Leibler divergence [Peters and Schaal, 2008b], thus,
after adding the additional constraint of D (pθ′ (τ ) ‖pθ (τ )) = δ, we can derive the
natural policy gradient by simply approximating

D (pθ′ (τ ) ‖pθ (τ )) ≈ 0.5
(
θ′ − θ

)T F (θ)
(
θ′ − θ

)
(2.12)

with its second-order expansion where F(θ) denotes the Fisher information matrix
[Bagnell and Schneider, 2003, Peters et al., 2003a]. See Algorithm 2.3 for an exemplary
implementation.

Policy Search via Expectation Maximization. One major drawback of gradient-based
approaches is the learning rate, an open parameter which can be hard to tune in
control problems but is essential for good performance. Expectation-Maximization
algorithms are well-known to avoid this problem in supervised learning while even
yielding second-order convergence [McLachan and Krishnan, 1997]. Previously, similar
ideas have been explored in immediate reinforcement learning [Dayan and Hinton,
1997, Peters and Schaal, 2007c, 2008a, 2006c, 2007b]. In general, an EM-algorithm
would choose the next policy parameters θn+1 such that θn+1 = argmaxθ′ Lθ(θ′). In
the case where π(at|st, t) belongs to the exponential family, the next policy can be
determined analytically by setting Equation (2.10) to zero, i.e.,

E

{
T∑
t=1
∂θ′ log π (at|st, t)Qπ (s, a, t)

}
= 0, (2.13)

and solving for θ′. Depending on the choice of a stochastic policy, we will obtain
different solutions and different learning algorithms. It allows the extension of the
reward-weighted regression to larger horizons (see Algorithm 2.4 for an exemplary
implementation) as well as the introduction of the Policy learning by Weighting
Exploration with the Returns (PoWER) algorithm.
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2.2 Episodic Policy Learning

Algorithm 2.3 episodic Natural Actor Critic (eNAC)

Input: initial policy parameters θ0

repeat

Sample:
Perform h = {1, . . . ,H} rollouts using

a = θTφ (s, t) + εt

with [εnt ] ∼ N
(

0,
(
σh,n

)2
)

as stochastic policy and collect all(
t, sht ,aht , sht+1, ε

h
t , r

h
t+1

)
for t = {1, 2, . . . , T + 1} .

Compute:
Return

Rh =
T+1∑
t=1

rht

and eligibility

ψh,n =
T∑
t=1

1(
σnh
)2 εh,nt φn

(
sh,nt , t

)
for each parameter n = {1, . . . , N} from rollouts.

Compute Gradient: [
gT

eNAC, Rref
]T

=
(
ΨTΨ

)−1
ΨTR

with Ψ =
[
ψ1, . . . , ψH

1, . . . , 1

]T

and R =
[
R1, . . . , RH

]T
.

Update:
policy using

θk+1 = θk + αgeNAC.

until Convergence θk+1 ≈ θk.
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Algorithm 2.4 episodic Reward Weighted Regression (RWR)

Input: initial policy parameters θ0

repeat

Sample:
Perform h = {1, . . . ,H} rollouts using

a = θTφ (s, t) + εt

with [εnt ] ∼ N
(

0,
(
σh,n

)2
)

as stochastic policy and collect all(
t, sht ,aht , sht+1, ε

h
t , r

h
t+1

)
for t = {1, 2, . . . , T + 1} .

Compute:
Return

Rh =
T+1∑
t=1

rht

from rollouts.

Update:
policy using

θnk+1 =
(
(Φn)T RΦn

)−1
(Φn)T RAn

with basis functions Φn =
[
φ1,n

1 , . . . , φ1,n
T , φ2,n

1 , . . . , φ2,n
T , . . . , φH,n1 , . . . , φH,nT

]T
,

actions An =
[
a1,n

1 , . . . , a1,n
T , a2,n

1 , . . . , a2,n
T , . . . , aH,n1 , . . . , aH,nT

]T
and returns R = diag

(
R1, . . . , R1, R2, . . . , R2, . . . , RH , . . . , RH

)
.

until Convergence θk+1 ≈ θk.
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2.3 Policy Learning by Weighting Exploration with the Returns

2.3 Policy Learning by Weighting Exploration with the Returns

In most learning control problems, we attempt to have a deterministic mean policy
ā = θTφ(s, t) with parameters θ and basis functions φ, e.g., in linear-quadratic
regulation where we have gains as θ and states as φ(s, t). In Section 3.1, we
will introduce the basis functions of the motor primitives. When learning motor
primitives, we turn this deterministic mean policy ā = θTφ(s, t) into a stochastic
policy using additive exploration ε(s, t) in order to make model-free reinforcement
learning possible, i.e., we always intend to have a policy π(at|st, t) which can be
brought into the form

a = θTφ (s, t) + ε (φ (s, t)) . (2.14)
Previous work in this context [Williams, 1992, Guenter et al., 2007, Peters and Schaal,
2006b, 2007b] has focused on state-independent, white Gaussian exploration, i.e.,
ε(φ(s, t)) ∼ N (0,Σ). It is straightforward to obtain the Reward-Weighted Regression
for episodic RL by solving Equation (2.13) for θ′ which naturally yields a weighted
regression method with the state-action values Qπ(s, a, t) as weights. This form of
exploration has resulted into various applications in robotics such as tennis swings
[Ijspeert et al., 2002a, 2003], T-Ball batting [Peters and Schaal, 2006b], Peg-In-Hole
[Gullapalli et al., 1994], humanoid robot locomotion [Schaal et al., 2003, Nakanishi
et al., 2004b], constrained reaching movements [Guenter et al., 2007] and operational
space control [Peters and Schaal, 2007c], see [Guenter et al., 2007, Peters and Schaal,
2006b, 2007b] for both reviews and their own applications.
However, such unstructured exploration at every step has a multitude of disad-
vantages: it causes a large variance which grows with the number of time-steps
[Peters and Schaal, 2006b], it perturbs actions too frequently ‘washing’ out their
effects and can damage the system executing the trajectory. As a result, all methods
relying on this state-independent exploration have proven too fragile for learning the
Ball-in-a-Cup task on a real robot system. Alternatively, one could generate a form
of structured, state-dependent exploration

ε (φ (s, t)) = εT
t φ (s, t) (2.15)

with [εt]ij ∼ N (0, σ2
ij), where σ2

ij are meta-parameters of the exploration that can
also be optimized. This argument results into the policy

a ∼ π (at|st, t) = N
(
a|θTφ (s, t) , Σ̂ (s, t)

)
. (2.16)

Inserting the resulting policy into Equation (2.13), we obtain the optimality condition
update in the sense of Equation (2.13) and can derive the update rule

θ′ = θ +
E

{
T∑
t=1
εtQ

π (s, a, t)
}

E

{
T∑
t=1
Qπ (s, a, t)

} . (2.17)
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Algorithm 2.5 EM Policy learning by Weighting Exploration with the Returns (PoWER)

Input: initial policy parameters θ0

repeat

Sample:
Perform rollout(s) using

a = (θ + εt)Tφ (s, t)

with [εt]ij ∼ N
(
0, σ2

ij

)
as stochastic policy and collect all

(t, st,at, st+1, εt, rt+1) for t = {1, 2, . . . , T + 1} .

Estimate:
Use unbiased estimate

Q̂π (s,a, t) =
T∑
t̃=t
r
(
st̃,at̃, st̃+1, t̃

)
.

Reweight:
Compute importance weights and reweight rollouts,
discard low-importance rollouts.

Update:
policy using

θk+1 = θk +

〈
T∑
t=1
εtQ

π (s,a, t)
〉
w(τ )〈

T∑
t=1
Qπ (s,a, t)

〉
w(τ )

.

until Convergence θk+1 ≈ θk.
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In order to reduce the number of rollouts in this on-policy scenario, we reuse the
rollouts through importance sampling as described in the context of reinforcement
learning in [Sutton and Barto, 1998]. To avoid the fragility sometimes resulting from
importance sampling in reinforcement learning, samples with very small importance
weights are discarded. The expectations E{·} are replaced by the importance sampler
denoted by 〈·〉w(τ ). The resulting algorithm is shown in Algorithm 2.5. As we will
see in Section 4, this PoWER method outperforms all other described methods
significantly.
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3 Motor Primitives

Motor primitives encode the elemental motions which serve as macro-actions for a
higher-level supervisory system which relies on perceptual input. For example, a
forehand and a backhand in tennis could be seen as two different motor primitives of
the tennis player.
Biological research hindicates that humans and biological systems rely on motor
primitives [Flash and Hochner, 2005, Thoroughman and Shadmehr, 2000]. For
example many reflexes are still intact in a despinalized frog. It still tries to remove
irritants from its skin by using precisely aimed and adapted trajectories. These
trajectories even include a trajectory correction response which means that the frog
is able to circumvent obstacles in the trajectory gracefully. If the grey matter of
the spinal cord is stimulated, this leads to specific time variant force-fields (which
correspond to motions) depending on the location of the stimulation. If these
force-fields are superposed (i.e., the spinal cord is stimulated at multiple locations
simultaneously) more complex motions can be achieved [Bizzi et al., 2002].
Also higher vertebrates, as rats [Tresch and Bizzi, 1999] and cats [Lemay and Grill,
2000], are organized in this way. Successive surgical lesions of a cat’s central nervous
system lead to less and less coordination and control. Initially the cat still has
voluntary locomotion, it loses successively control, balance and coordination of all
four limbs. Finally only the hind limbs have bipedal coordination [Marcoux and
Rossignol, 2000]. Some execution functions and details are delegated to the lower
levels of the central nervous system. These characteristics represent some kind of
hierarchical architecture.
Motor primitives have also become a concept successfully used in robotics. There are
several different formulations that can be grouped into two categories: based on via
points or on dynamical systems. The via point based formulations basically generate
the trajectories by interpolating between different via points. Most support clustering
of via points belonging to several, slightly varying, demonstration trajectories. For
example, Inamura et al. [2004], Williams et al. [2008] use Hidden Markov Models
which encode the transition probabilities and the output probabilities. Calinon et al.
[2007] use Gaussian Mixture Models [Ghahramani and Jordan, 1994], i.e., Gaussian
kernels with different scales, centers and width to encode the shape of the trajectory.
Drumwright et al. [2004] use exemplars [Rose et al., 1998], i.e., an interpolation
between exemplary trajectories. Toussaint et al. [2007] use a sequence of attractor
points in the task space based on Ijspeert’s ideas. Kolter et al. [2008] use local
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3 Motor Primitives

(a) Ijspeert Model (b) New Model

Figure 3.1: Illustration of the behavior of the motor primitives (a) and the augmented
motor primitives (b).

controllers as via points and index them by space instead of using the common
indexing by time. Dynamical systems use states of differential equations to generate
trajectories, examples include [Ijspeert et al., 2003, Schaal et al., 2007] and [Righetti
and Ijspeert, 2006]. For discrete primitives point attractor dynamical systems are
used and oscillators for rhythmic primitives. The shape is modified either by a
superposition of several systems or by a (nonlinear) transformation function.
For robotics, we need a suitable representation of motion as generic representation
cannot cope with the high dimensionality of interesting motor systems. This rep-
resentation should ideally be task-appropriate and straightforward to learn. We
need smooth trajectories as jumps could damage the hardware, we would like to
have a representation that has only a very limited number of parameters and those
parameters should be capable of changing the speed and duration, the final state, the
amplitude, etc. of the motion without changing the overall shape of the trajectory.
The model by Ijspeert et al. [2003], Schaal et al. [2007] fulfills all these requirements
and which we introduce in Section 3.1. It is also linear in parameters and, thus, the
policy is straightforward to learn (see Section 3.2).
In this section, we first introduce the general idea behind motor primitives based on
dynamical systems as suggested in [Ijspeert et al., 2002a, 2003] (Section 3.1) and,
subsequently, show how perceptual coupling can be introduced. Finally, we show
how the perceptual coupling can be realized by augmenting the acceleration-based
framework from [Schaal et al., 2007] (Section 3.3).

3.1 Model

Figure 3.1(a) shows an illustration of the idea behind the model. In the simplest case
we have a system with only one degree of freedom. We want to move this degree
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Figure 3.2: General schematic illustrating both the original motor primitive framework
by [Ijspeert et al., 2003, Schaal et al., 2007] in black and the augmentation for perceptual
coupling in red.

of freedom from an initial position to a final position. For example in a Swing-Up
task (which we are going to use as an evaluation in Section 4.3) we have a pendulum
that is hanging down and we want to swing it up into an upright position. Thus,
we could imagine a spring attached to the pendulum on the one side and to the
desired upright position on the other side. As we want to stabilize the pendulum
in the upright position, we use a spring-damper system instead of a simple spring.
In Section 4.3, we study an Underactuated Swing-Up, i.e. a system which does not
have enough energy to move the pendulum directly to an upright position. In order
to swing the pendulum up, it has to move in the opposite direction first in order
to pump in energy. To allow more general shapes of the motion we can replace the
linear spring by a nonlinear spring. See Figure 3.3 for an illustration of a motor
primitive with a linear and with a nonlinear “spring”. Spring-damper systems can be
modeled by dynamical systems, which are used for this model.

The basic insight in the original work of Ijspeert et al. [2002a, 2003] is that motor
primitives can be parted into two components, i.e., a canonical system h which drives
transformed systems gk for every considered degree of freedom k. As a result, we
have system of differential equations given by

ż = h (z) , (3.1)
ẋ = g (x, z,w) , (3.2)

which determine the variables of internal focus x. Here, z denotes the state of the
canonical system and w the internal parameters for transforming the output of the
canonical system. The schematic in Figure 3.2 illustrates this traditional setup in
black.
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The original formulation in [Ijspeert et al., 2002a, 2003] was a major breakthrough as
the right choice of the dynamical systems in Equations (3.1, 3.2) allows determining
the stability of the movement, choosing between a rhythmic and a discrete movement
and is invariant under rescaling in both time and movement amplitude. With the
right choice of function approximator (in our case locally-weighted regression, see
Section 3.2), fast learning from a teachers presentation is possible.
While the original formulation in [Ijspeert et al., 2002a, 2003] used a second-order
canonical system, it has since then been shown that a single first order system suffices
[Schaal et al., 2007], i.e., we have

ż = h (z) = −ταhz,

which represents the phase of the trajectory. It has a time constant τ and a parameter
αh which are chosen such that the system is stable. We can now choose our internal
state such that position of degree of freedom k is given by qk = x2k, i.e., the
2kth component of x, the velocity by q̇k = τx2k+1 = ẋ2k and the acceleration by
q̈k = τ ẋ2k+1. Upon these assumptions, we can express the motor primitives function
g in the following form

ẋ2k+1 = ταg (βg (tk − x2k)− x2k+1) + τ
((
tk − x0

2k

)
+ ak

)
fk, (3.3)

ẋ2k = τx2k+1. (3.4)

This differential equation has the same time constant τ as the canonical system,
appropriately set parameters αg, βg, a goal parameter tk, an amplitude modifier
ak, and a transformation function fk. The transformation function transforms the
output of the canonical system so that the transformed system can represent complex
nonlinear patterns and it is given by

fk (z) =
N∑
i=1

ψi (z)wizk (3.5)

where w are adjustable parameters and ψ(z) are weights. It uses normalized Gaussian
kernels without scaling such as weights given by

ψi =
exp

(
−hi (z − ci)2

)
∑N
j=1 exp

(
−hj (z − cj)2

) . (3.6)

These weights localize the interaction in phase space using the centers ci and widths
hi.
Figure 3.3 shows exemplary plots for the canonical system z, the transformed system x,
the transformation function f, the weighting functions ψ and the weights w. The
length of the episode is one second. The initial state x0

1 = 0 and the initial velocity
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x0
0 = 0. The goal parameter is t = 1. In the top left, the behavior of the transformed

system x1 is shown if the transformation function f = 0. This corresponds to
the model of a linear spring pulling the system from the initial state x0

1 = 0 to
the goal t = 1 within the duration of the episode and then resting at the goal
state. The canonical system z (bottom left) is decreasing from 1 to 0 during the
period and resting at 0 afterwards. The shape of the policy can be changed using
the transformation function f . It is defined by the weights w (bottom right), the
canonical system z as basis function and the weighting functions ψ (bottom center).
The weighting functions ψ are normalized Gaussian kernels with centers c and
widths h localized in phase by the canonical system z. The resulting transformation
function f is shown in the top center. The top right corner displays the transformed
system x1. This corresponds to the model of a nonlinear spring pulling the system
from the initial state x0

1 = 0 first in the opposite direction and then to the goal t = 1.

3.2 Learning for Motor Primitives

Traditionally, there are two approaches in robotics for learning policies: supervised
learning and reinforcement learning. Both have their advantages and disadvantages.
Supervised learning has a well defined target and it allows to learn policies fast
from examples of a (human) teacher. However the policy can only reproduce the
presented examples. Often this reproduction is imperfect but supervised learning
cannot improve the policy without further examples. On the other hand, reinforce-
ment learning is designed for performance related self improvement. Nevertheless,
traditional reinforcement learning algorithms require exhaustive exploration of the
state and action space. Our robot has seven degrees of freedom and a policy lasts for
a few seconds. Due to the “curse of dimensionality” [Bellman, 1957] we cannot use
a pure reinforcement learning approach as the dimensionality is prohibitively high.
Thus, we need a concerted approach. We follow “nature as our teacher” and learn
the policy first by imitation learning and, subsequently, improve it by reinforcement
learning. This approach mimics how humans learn new motor skills. We also have a
teacher explaining to us how the motion is supposed to be done or giving a demon-
stration. So before actually executing the motion, we have a good idea how it could
be achieved. For simple tasks, this imitation often will be sufficient to perform the
task successfully but for more complicated skills, we still need trial-and-error-based
improvement to become successful. Furthermore performing many trials allows us to
perform any task better, according to a single or combined criterion (e.g., faster, with
less effort, more precisely). For example, when learning to juggle three balls we have
a teacher, video or written instructions showing the motion (giving a demonstration
and/or description). During the first trial, trying to reproduce the shown motion,
the learning person will most likely not catch more than one ball. After a few days
of practicing, most people are able to juggle continuously for a few minutes. The
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3.3 Perceptually Coupled Motor Primitives

skill can be further improved to a point where juggling can be done blindfolded.

Our concerted approach initializes the motor primitives by imitation learning. This
learning is straightforward as the transformation function (3.5) of our policy rep-
resentation is linear in parameters. We want to minimize the weighted squared
error

ε2
m =

n∑
i=1
ψmi

(
f ref
i − zT

i wm
)2

(3.7)

for all parameters wm with m ∈ {1, 2, . . . , N}, the corresponding weighting func-
tion ψmi and basis functions zT

i . The reference or typical signal f ref
i is the desired

transformation function and i indicates the time step. Equation (3.7) can be rewritten
in matrix form as

ε2
m =

(
f ref − Zwm

)T
Ψ
(
f ref − Zwm

)
(3.8)

with f ref giving the value of f ref
i for all time steps, Ψ = diag (ψmi , . . . , ψmn ) and

Zi = zT
i . This standard optimization problem can be solved in a straightforward

manner using linear regression and results in locally-weighted (linear) regression

wm =
(
ZTΨZ

)−1
ΨTZf ref. (3.9)

This approach has originally been suggested by Ijspeert et al. [2002a, 2003].

After initialization of the motor primitives by locally-weighted regression for imitation
learning, we use our novel algorithm PoWER (see Section 2.3) to adapt the parameters
(w, t and/or a) in order to further improve the policy by reinforcement learning.

3.3 Perceptually Coupled Motor Primitives

When taking an external variable y into account, there are three different ways how
this variable influences the motor primitive system which one can consider. The
external variable could (i) only influence Equation (3.1) which would be appropriate
for synchronization problems and phase-locking (similar as in [Pongas et al., 2005,
Nakanishi et al., 2004a]). It could (ii) only affect Equation (3.2) which allows
the continuous modification of the current state of the system by another variable.
Finally, it could (iii) influence the combination of (i) and (ii).

While (i) and (iii) are the appropriate solution if phase-locking or synchronization
to external triggers is needed, the coupling in the canonical system will vanquish
many of the nice properties of the system and make it prohibitively hard to learn
in practice. Furthermore, as we concentrate on discrete movements in this diploma
thesis, we focus on the case (ii) which has not been used to date (see Figure 3.1(b)
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3 Motor Primitives

for an illustration). In this case, we have a modified dynamical system

ż = h (z) , (3.10)
ẋ = ĝ (x,y, ȳ, z,v) , (3.11)
˙̄y = g (ȳ, z,w) , (3.12)

where y denotes the state of the external variable, ȳ the expected state of the external
variable and ˙̄y its derivative. This architecture inherits most positive properties from
the original work while allowing the incorporation of external feedback. We will show
that we can incorporate previous work with ease and that the resulting framework
resembles the original work in [Schaal et al., 2007, Ijspeert et al., 2002a, 2003] while
allowing to couple the external variables into the system.
In order to learn a motor primitive with perceptual coupling, we need two components.
First, we need to learn the normal or average behavior ȳ of the variable of external
focus y which can be represented by a single motor primitive ḡ, i.e., we can use the
same type of function from Equations (3.2, 3.12) for ḡ which are learned based on the
same z and given by Equations (3.3, 3.4). Additionally, we have the system ĝ for the
variable of internal focus x which determines our actual movements incorporating
the inputs of the normal behavior ȳ as well as the current state y of the external
variable. We obtain the system ĝ by inserting a modified coupling function f̂(z,y, ȳ)
instead of the original f(z) in g. This new function f̂(z,y, ȳ) is augmented in order
to include perceptual coupling to y and we obtain

f̂k (z,y, ȳ) =
N∑
i=1

ψi (z) ŵizk +
M∑
j=1

ψ̂j (z)
(
κT
jk (y− ȳ) + δT

jk

(
ẏ− ˙̄y

))
, (3.13)

where ψ̂j(z) denotes Gaussian kernels as in Equation (3.6) with centers ĉj and
width ĥj. Note, that it can be useful to set N > M to reduce the number of
parameters. All parameters are given by v = [ŵ,κ, δ]. Here, ŵ are just the standard
transformation parameters while κjk and δjk are the local coupling factors which
can be interpreted as gains acting on the difference between the desired behavior of
the external variable and its actual behavior. Note that for noise-free behavior and
perfect initial positions such coupling would never play a role. Thus, the approach
would simply become the original approach suggested in [Ijspeert et al., 2002a, 2003]
and presented in Section 3.1. However, in the noisy, imperfect case, this perceptual
coupling can ensure success even in extreme cases.

3.4 Learning for Perceptually Coupled Motor Primitives

While the transformation function fk(z) can be learned from few presentations or
even just a single example, this simplicity no longer transfers to learning the new
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3.4 Learning for Perceptually Coupled Motor Primitives

function f̂k(z,y, ȳ) as perceptual coupling requires the coupling to an uncertain
external variable. While imitation learning approaches are feasible, they require
larger numbers of presentations of a teacher with very similar kinematics for learning
the behavior sufficiently well. It is also hard to find consistent examples. As
an alternative, we use a similar approach of imitation and self-improvement by
trial-and-error as in Section 3.2.
For imitation learning, we can largely follow the original work in [Ijspeert et al., 2002a,
2003] and only need minor modifications to incorporate the perceptual coupling
from Equation (3.13). We also make use of locally-weighted regression in order to
determine the optimal motor primitives, use the same weighting and compute the
targets based on the dynamical systems. However, unlike in [Ijspeert et al., 2002a,
2003], we need a bootstrapping step as we determine the parameters first for the
system described by Equation (3.12) and, subsequently, use the learned results in
the learning of the system in Equation (3.11). For doing so, we can compute the
regression targets for the first system by taking Equation (3.3), replacing ȳ and ˙̄y by
samples of y and ẏ, and solving for fk(z) as discussed in [Ijspeert et al., 2002a, 2003]
and Section 3.2. A local regression yields appropriate values for the parameters of
fk(z). Subsequently, we can perform the exact same step for f̂k(z,y, ȳ) where only
the number of variables has increased but the resulting regression follows analogously.
However, note that while a single demonstration suffices for the parameter vector
w and ŵ, the parameters κ and δ cannot be learned by imitation as these require
deviation from the nominal behavior for the external variable.
However, as discussed before, pure imitation of perceptual coupling can be difficult
for learning the coupling parameters as well as the best nominal behavior for a
robot with kinematics different from the human, many different initial conditions
and in the presence of significant noise. Thus, we suggest to improve the policy by
trial-and-error using reinforcement learning upon an initial imitation. As the reward
achieved by perceptual coupling depends not only on the fitness of the parameters
κ and δ but also on the perturbations, we average over the rewards of a small
batch of rollouts in order not to optimize for one specific kind of perturbation. The
problem is much harder as we have to deal with a variety of perturbations and, thus,
convergence is slower.
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4 Evaluations

In this section, we demonstrate the effectiveness of the algorithm presented in
Section 2.3 in the context of motor primitive learning for robotics as well as the
effectiveness of the augmented framework for perceptually coupled motor primitives
as presented in Section 3.3.

As first evaluation, we will show that the novel presented PoWER algorithm outper-
forms all previous well-known methods, i.e., Finite Difference Gradients [Tedrake
et al., 2004, Peters and Schaal, 2006b, Kohl and Stone, 2004], ‘Vanilla’ Policy Gra-
dients [Williams, 1992, Sutton et al., 2000, Lawrence et al., 2003, Tedrake et al.,
2004, Baxter et al., 2001, Baxter and Bartlett, 2001, Peters and Schaal, 2006b], the
Episodic Natural Actor Critic [Bagnell and Schneider, 2003, Peters et al., 2003a,
Peters and Schaal, 2006b] and the generalized Reward-Weighted Regression [Peters
and Schaal, 2007b] on the two simulated benchmark problems suggested in [Peters
and Schaal, 2006b] and a simulated Underactuated Swing-Up [Atkeson, 1994].

Real robot applications are done with our best benchmarked method, the PoWER
method. Here, we first show PoWER can learn the Underactuated Swing-Up [Atkeson,
1994] even on a real robot. As a significantly more complex motor learning task,
we show that this method can be used in learning a complex, high-speed, real-life
motor learning problem Ball-in-a-Cup [Wikipedia, 2008a] with motor primitives for
all seven degrees of freedom of our Barrett WAMTM robot arm. Finally, we show
that we can learn perceptual coupling for Ball-in-a-Cup in a physically realistic
simulation of an anthropomorphic robot arm. Ball-in-a-Cup is a good benchmark
for testing the motor learning performance as it is sufficiently complex for humans.
We show that we can learn the problem roughly at the efficiency of a young child.
PoWER successfully creates a perceptual coupling which results in robustness even
to perturbations that are very challenging for a skilled adult player.

4.1 Experimental Setup

The evaluations were done in simulation as well as on a real physical robot. In
Section 4.1.1 we introduce the hardware and software we used and in Section 4.1.2
we describe how Ball-in-a-Cup was modelled for simulation.
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(a) Simulated Barrett WAMTM

Arm
(b) Real Barrett WAMTM Arm (c) Simulated SARCOS Master

Arm

Figure 4.1: This Figure shows the robots that were used for the evaluations.

4.1.1 Hardware and Software

The benchmark comparison in Section 4.2 was done using MATLABTM. The motor
primitives are programmed as structures containing the parameters and the current
state. The dynamical systems are solved by numerical integration using the semi-
implicit Euler algorithm. The implementation of the presented reinforcement learning
algorithms was done using only standard MATLABTM commands. We compared
the results of these algorithms to the result of the Optimization Toolbox.
We used a simulated Barrett WAMTM Arm and a real Barrett WAMTM Arm for
the Underactuated Swing-Up as well as for Ball-in-a-Cup. For the evaluation of the
perceptual coupling we used a simulated SARCOS Master Arm (see Figure 4.1).
Both the Barrett WAMTM Arm and the SARCOS Master Arm are anthropomorphic
seven degrees of freedom arms. The Barrett WAMTM Arm uses differential cable
drives and has the heavy motors located in the base. As a result the arm is compliant,
backdriveable and is capable of high speed motions. The controller for the joint
positions and velocities is model based and runs at 500 Hz on a real-time Linux
computer using Xenomai. The desired motor torques are sent to the robot via a
CAN bus. This bus also transfers the signals from the joint encoders. The motor
currents are controlled onboard within the robot. The motor primitives yield the
desired positions, velocities and accelerations which are cascaded through the joint
controllers and the motor controllers.
As simulation environment, we use SL [Schaal, 2004]. The program is split in different
servos, including the task servo, the vision servo, the motor servo, the simulation
servo and the robot servo. This modular design makes it possible to switch between
a physically realistic simulation and controlling the real robot straightforwardly as
the simulation servo simply has to be switched to the robot servo, and the vision
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4.1 Experimental Setup

Figure 4.2: This figure introduces the used notations: (x, z) is
the position of the ball, (x0, z0) is the position where the string
is attached to the cup. Gravity mg pulls the ball downwards
(where m is the mass of the ball and g = 9.81m/s2 the gravita-
tional constant), Fc pulls the ball towards the cup. The current
string length is denoted by l, the nominal string length by l0.

servo from a simulated one to one getting data from real cameras. The work in
this diploma thesis consisted of programming the task servo, which handles the
generation of the desired state of the robot, based on the information from the vision
servo and proprioceptive feedback from the robot joints (via the simulation servo
or the robot servo). The desired state is passed to the motor servo, which outputs
motor torques. These motor torques are then passed either to the simulation servo
or the real robot. The other servos were built by other members of our group. The
vision servo is based on two cameras using a blob detector and a learned calibration
to the robot coordinate system to get the position of the ball for the Ball-in-a-Cup
task. SL is written in C, uses OpenGL for display in the state of simulation and it
runs on Unix and Unix-like operating systems.

4.1.2 Modeling Ball-in-a-Cup

The simulation servo in SL only simulates the robot itself and interactions with
simple objects. Thus, we need to model Ball-in-a-Cup by hand.
The model is based on a point mass attached to a point by a spring-damper system.
The spring-damper system models an elastic string at nominal string length and the
forces if the string is stretched even further. If the distance of the ball to the cup is
less than the nominal string length the ball is simulated as a free point mass.
Constrained Dynamics. In order to obtain the constrained dynamics, we employed
Gauss’ principle [Udwadia and Kalaba, 1996]. For better readability, we show the
derivation in two dimensions. It is straightforward to fill in the missing terms for the
third dimension. See Figure 4.2 for the definitions of the variables.
The forces acting on the ball can be written as

mẍ = F x
c ,

mz̈ = F z
c −mg. (4.1)

The string is modeled as a spring damper system given by

l̈ + dl̇ + k (l − l0) = 0,
l̈ = −dl̇ − k (l − l0) , (4.2)
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where d is the dampening constant and k the spring constant. The current length of
the string is given by the Pythagorean theorem

l = (x− xo)2 + (z − zo)2 . (4.3)

Differentiating this length (4.3) twice leads to

l̇ = 2 (x− xo) (ẋ− ẋo) + 2 (z − zo) (ż − żo) (4.4)
l̈ = 2 (ẋ− ẋo)2 + 2 (x− xo) (ẍ− ẍo)

+ 2 (ż − żo)2 + 2 (z − zo) (z̈ − z̈o) . (4.5)

If we insert Equations (4.3, 4.4) into Equation (4.2), then insert this result in
Equation (4.7) and rearrange the expression, we get

[
(x− x0) (z − z0)

]
︸ ︷︷ ︸

A

[
ẍ
z̈

]
= b (4.6)

with

b = − (ẋ− ẋo)2 − (ż − żo)2 + (x− xo) ẍo + (z − zo) z̈o
− d ((x− xo) (ẋ− ẋo) + (z − zo) (ż − żo))

− k

2
(
(x− xo)2 + (z − zo)2 − l0

)
. (4.7)

For an equation of the form Aẍ = b, Gauss’ Principle can be applied yielding the
constraint forces

Fc = M
1
2
(
AM− 1

2
)+ (

b−AM−1F
)

(4.8)

with the pseudo inverse A+ =
(
AAT

)−1
AT, the matrix root M

1
2 M

1
2 = M, the

generalized mass matrix M and the internal forces F (i.e., all forces not included
in the constrained forces Fc). Inserting Equation (4.6), M = mI (where I is the
identity matrix) and F = [0,−mg]T in Equation (4.8), we obtain

Fc = m
(
AAT

)
AT

(
b− 1

m
AF

)
,

= m

(x− xo)2 + (z − zo)2

[
x− x0
z − z0

] (
b+ m

m
(z − z0) g

)
. (4.9)

Using Equation (4.7) we get the constraint forces

Fc = Fc
1

(x− xo)2 + (z − zo)2

[
x− x0
z − z0

]
(4.10)
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with

Fc = m
(
− (ẋ− ẋo)2 − (ż − żo)2 + (x− xo) ẍo + (z − zo) z̈o

− d ((x− xo) (ẋ− ẋo) + (z − zo) (ż − żo))

− k

2
(
(x− xo)2 + (z − zo)2 − l0

)
+ (z − z0) g

)
. (4.11)

Free Dynamics. If the distance between the ball and the cup is less than the string
length, the ball is modeled as a free flying point mass with ẍ = 0 and z̈ = −g.
Collisions and Reflections: When collisions of ball and cup are detected the accel-
erations are adjusted accordingly. As result

b̈ =
ϑ
(
ḃ− ċ

)
∆t (4.12)

would be the new acceleration of the ball with velocity ḃ after reflection on a plane of
the cup with velocity ċ. For a perfect reflection ϑ = 2. We used ϑ = 1.5 to model the
energy loss. As the ball is a sphere, the contact plane of the ball is always orthogonal
to the other contact plane. If we transform the system to “Cup-Space”, it is easy to
find these planes either directly or using the intercept theorem.
Numerical Simulation. As SL is written in C the equations were also implemented
in C. The numerical simulation runs at 500Hz. For the integrations we use the
semi-implicit Euler algorithm (also called symplectic Euler, semi-explicit Euler,
Euler–Cromer, and Newton–Størmer–Verlet [Wikipedia, 2008b])

ẋi = ẋi−1 + ∆tẍi−1

xi = xi−1 + ∆tẋi (4.13)

with time index i and time step ∆t = 0.002s. This combination of an explicit and
implicit Euler step yields better results in comparison to the explicit Euler as the
energy is almost conserved, while implementation complexity and calculational costs
are the same [Verlet, 1967, Vesely, 2001, Giordano and Nakanishi, 2005].
Verification. Simulation with initial conditions and cup trajectories taken from
motion captured data, confirmed that our simulation is physically realistic (see
Figure 4.3) once the spring and damper coefficients were adjusted to reflect the
behavior of the real system. For motion capturing, we used a VICONTM setup
(see Figure 4.4). Our setup has twelve cameras in total, three in each corner. The
cameras emit infrared light which is reflected on passive infrared reflective markers.
The supplied software is used to track the markers in the two dimensional camera
images and fuse the information of the twelve cameras for the three dimensional
Cartesian coordinates of the markers. The human performer wears a shirt with 23
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markers. The software has a model of the human upper body with the corresponding
markers. The software fits the parts of the body to the markers, taking into account
constraints defined in the model. The software also calculates the positions of the
body parts (which do not necessarily correspond directly to the markers) and the
joint angles. The cup has five markers attached to it in order to obtain the Cartesian
position and rotations. The ball is a marker itself and only the Cartesian position
can be obtained. For the verification of the Ball-in-a-Cup simulation we used the
Cartesian coordinates of the cup and the ball. The Cartesian positions, velocities
and accelerations of the cup were “played back” in the simulator and we verified that
the simulated ball behaves the same way as the motion-captured ball, if we set the
simulated initial conditions to the real ones. For Section 4.5 we also used the joint
angles, velocities and accelerations of the human performer’s right arm.
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Figure 4.5: This figure shows the solutions for the benchmark problems, t = 1.4 corresponds
to T . To verify the found solutions we used the MATLABTM Optimization Toolbox
(fminunc). The learned solutions only differ very slightly from the optimal ones (for the
given reward and the limited representational power of the motor primitives).

4.2 Benchmark Comparison

As benchmark comparison, we intend to follow a previously studied scenario in order
to evaluate which method is best-suited for our problem class. For doing so, we
perform our evaluations on the same benchmark problems as [Peters and Schaal,
2006b] and use two tasks commonly studied in motor control literature [Ben-Itzhak
and Karniel, 2008] for which the analytic solutions are known. In this comparison,
we mainly want to show the suitability of our algorithm and show that it outperforms
previous methods such as Finite Difference Gradient (FDG) methods [Tedrake et al.,
2004, Peters and Schaal, 2006b, Kohl and Stone, 2004], ‘Vanilla’ Policy Gradients
(VPG) with optimal baselines [Williams, 1992, Sutton et al., 2000, Lawrence et al.,
2003, Tedrake et al., 2004, Baxter et al., 2001, Baxter and Bartlett, 2001, Peters and
Schaal, 2006b], the Episodic Natural Actor Critic (eNAC) [Bagnell and Schneider,
2003, Peters et al., 2003a, Peters and Schaal, 2006b], and the episodic version of the
Reward-Weighted Regression (RWR) algorithm [Peters and Schaal, 2007b].

We consider two standard tasks taken from [Peters and Schaal, 2006b] but we use
the newer form of the motor primitives from [Schaal et al., 2007]. The first task
is to achieve a goal with a minimum-squared movement acceleration and a given
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Figure 4.6: This figure shows the mean performance of all compared methods in two
benchmark tasks averaged over twenty learning runs with the error bars indicating the
standard deviation. Policy learning by Weighting Exploration with the Returns (PoWER)
clearly outperforms Finite Difference Gradients (FDG), ‘Vanilla’ Policy Gradients (VPG),
the Episodic Natural Actor Critic (eNAC) and the adapted Reward-Weighted Regression
(RWR) for both tasks.

movement duration, i.e. a return of

R (τ ) = −
T/2∑
i=0
c1q̈

2
i −

T∑
i=T2 +1

c2
[
(qi − g)2 + q̇2

i

]
(4.14)

is being optimized, where c1 = 1/100 is the weight of the transient rewards for
the movement duration T/2, while c2 = 1000 is the importance of the final reward,
extended over the time interval [T/2 + 1, T ], which insures, that the goal state g = 1.0
is reached and maintained properly (see Figure 4.5a). The initial state of the motor
primitive is always zero in this toy evaluation.
The second task involves passing through an intermediate point during the trajectory,
while minimizing the squared accelerations, i.e., we have a similar return with an
additional punishment term for missing the intermediate point pM at time M given
by

R (τ ) = −
T/2∑
i=0
c̃1q̈

2
i −

T∑
i=T2 +1

c̃2
[
(qi − g)2 + q̇2

i

]
− c̃3 (qM − pM)2 (4.15)

where c̃1 = 1/10000, c̃2 = 200, c̃3 = 20000. The goal has a value of g = 1.0, the
intermediate point a value of pM = 0.5 at time M = 7/40T and the initial state was
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zero. This return yields a smooth movement which passes through the intermediate
point before reaching the goal, even though the optimal solution is not identical to
the analytic solution with hard constraints (see Figure 4.5b).
All open parameters were manually optimized for each algorithm in order to maximize
the performance while not destabilizing the convergence of the learning process. When
applied in the episodic scenario, Policy learning by Weighting Exploration with the
Returns (PoWER) clearly outperforms the Episodic Natural Actor Critic (eNAC),
‘Vanilla’ Policy Gradient (VPG), Finite Difference Gradient (FDG) and the adapted
Reward-Weighted Regression (RWR) for both tasks. The episodic Reward-Weighted
Regression (RWR) is outperformed by all other algorithms suggesting that this
algorithm does not generalize well from the immediate reward case. While FDG
gets stuck on a plateau, both eNAC and VPG converge to the same, good final
solution. PoWER finds the same (or even slightly better) solution while achieving it
noticeably faster. The results are presented in Figure 4.6. Note that this plot has
logarithmic scales on both axes, thus, a unit difference corresponds to an order of
magnitude. The omission of the first twenty rollouts was necessary to cope with the
log-log presentation.
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4 Evaluations

Figure 4.7: This figure shows a schematic drawing of the pendulum.
Gravity g = 9.81m/s2 is pulling the pendulum of mass m = 0.5kg and
length l = 0.6m downwards. Additionally the motor torque u is applied
to the pendulum. The combined forces of gravity and motor torque move
the pendulum and yield the angle ϕ ∈ [−π, π] and the angular velocity ϕ̇.

4.3 Underactuated Swing-Up

As additional simulated benchmark and for the real-robot evaluations, we employed
the Underactuated Swing-Up [Atkeson, 1994]. Here, only a single degree of freedom
of the robot is used. This single degree of freedom is represented by one motor
primitive as described in Section 3.1. The goal of the task is to move a heavy
pendulum that is hanging downward to an upright position and stabilize it there.
See Figure 4.7 for an illustration. The system can be modeled as

ml2ϕ̈ = −µϕ̇+mgl sinϕ+ u (4.16)

with angles ϕ ∈ [−π, π], torque u, mass m, gravity g and length of the pendulum l.
The objective is threefold: the pendulum has to be swung up in minimum time, has
to be stabilized in the upright position and, at the same time, do this with minimal
motor torques. By limiting the motor current for that degree of freedom, we can
ensure that the torque limits |u| ≤ umax described in [Atkeson, 1994] are maintained
and directly moving the joint to the upright position is not possible. Under these
torque limits, the robot needs to (a) first move away from the target to limit the
maximal required torque during the swing-up in (b-d) and subsequent stabilization (e)
as illustrated in Figure 4.9(a-e). This problem is similar to a mountain-car problem,
a frequently used benchmark in the reinforcement learning literature. In this problem
we have a car placed in a valley, it is supposed to go on the top of the mountain but
does not have the necessary capabilities of acceleration to do so directly. Thus, the
car has to drive up the mountain on the opposite side of the valley first, in order
to gain sufficient energy. The standard mountain-car problem is designed to get
the car to the top of the mountain in minimum time, if it stops at this point or
drives with high speed does not matter, usage of the accelerator and break is not
punished. Adding the requirement of stabilizing the car at the top of the mountain
makes the problem significantly harder. The Underactuated Swing-Up considers
these additional constraints and requires the car to stop on top or experience a
failure.

The applied torque limits were the same as in [Atkeson, 1994] and so was the reward
function except that the complete return of the trajectory was transformed by an
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Figure 4.8: This figure shows the performance of all compared methods for the swing-up in
simulation and show the mean performance averaged over 20 learning runs with the error
bars indicating the standard deviation. PoWER outperforms the other algorithms from
50 rollouts on and finds a significantly better policy.

exp(·) to ensure positivity. The reward function is

r = α
(
ϕ

π

)2
+ β

( 2
π

)2
log cos

(
π

2
u

umax

)
. (4.17)

The first term of the sum is punishing the distance to the desired upright position and
the second term punishing the usage of motor torques. Again all open parameters
were manually optimized. The motor primitive with nine shape parameters and
one goal parameter was initialized by imitation learning from a kinesthetic teach-in.
As the pendulum is attached to the outer link of the robot we can simply modify
the mass and inertia data for the outer link in SL to obtain a simulation of the
pendulum. Subsequently, we compared the other algorithms as previously considered
in Section 4.2 and could show that PoWER would again outperform all other methods.
The results are given in Figure 4.8. As it turned out to be the best performing
method, we then used it successfully for learning optimal swing-ups on a real robot.
See Figure 4.9(f) and Figure 4.10 for the resulting real-robot performance.
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4 Evaluations

Figure 4.11: This figure illustrates how the reward is calculated. The
yellow plane represents the level of the upper rim of the cup. For a
successful rollout the ball has to be moved above the cup first and is
than flying in a downward direction into the opening of the cup. The
reward is calculated as the distance d of the center of the cup and the
center of the ball on the plane at the moment the ball is passing the
plane in a downward direction. If the ball is flying directly in the center
of the cup, the distance is 0 and through the transformation exp(−d)
yields the highest possible reward of 1. The further the ball passes the
plane from the cup, the larger the distance and, thus, the smaller the
resulting reward.

4.4 Learning Ball-in-a-Cup

The most challenging application in this evaluation is the children game Ball-in-a-
Cup, also known as Balero, Bilboquet or Kendama [Wikipedia, 2008a]. There are
two versions of this game. The first one is called Ball-in-a-Cup in the United States
of America or Fangbecher in Germany. This version, which we are going to use, has
a small cup which is held in one hand (or attached at the robot’s end-effector) and
the cup has a small wooden ball hanging down from it on a string (40cm for our
toy). Initially, the ball is hanging down vertically. The player needs to move fast in
order to induce a motion at the ball through the string, toss it up and catch it with
the cup, a possible movement is illustrated in Figure 4.14 (top row). The alternative
version is called Bilboquet in France; Balero, Boliche, Emboque, Perinola or Juego de
la Cocoa in Spanish and Portuguese speaking countries such as Argentina, Ecuador,
Colombia, Mexico, Spain, Chile, Brazil or Venezuela. Here the ball is larger and
has a hole. It is attached to a stick via a string. The goal is to throw the ball
up and catch it in such a way, that the ball is “impaled” on the stick. Historical
traces in Europe lead back to France in the sixteenth century where this game was
esteemed by King Henry III. The game had two big revivals in France, one in the
eighteenth century under Louis XV and another one in 1910. The game was not
originally a children’s game. There exist many variations on the size and shape of
the toy. Kendama, a traditional Japanese toy, is somewhat a combination of the
two versions. Here the player has several locations where the ball can be caught:
either on one of the three dishes of various sizes, on the spike or somewhere on the
crossing. Advanced players perform tricks and combinations and there are Kendama
championships. See Figure 4.12 for photos of the various toys.

The state of the system is described in joint angles and velocities of the robot and the
Cartesian coordinates of the ball. The actions are the joint space accelerations where
each of the seven joints is represented by a motor primitive. All motor primitives
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Figure 4.13: This figure shows the expected return of the learned policy in the Ball-in-a-Cup
evaluation averaged over 20 runs.

are perturbed separately but employ the same joint final reward given by

r (t) =

exp
(
−α (xc − xb)2 − α (yc − yb)2

)
if t = tc

0 else
(4.18)

where tc is the moment where the ball passes the rim of the cup with a downward
direction, the cup position denoted by [xc, yc, zc] ∈ R3, the ball position [xb, yb, zb] ∈
R3 and a scaling parameter α = 100 (also see Figure 4.11). The task is quite complex
as the reward is not modified solely by the movements of the cup but foremost by the
movements of the ball which are very sensitive to changes in the movement. A small
perturbation of the initial condition or during the trajectory will drastically change
the movement of the ball and hence the outcome of the rollout. In order to cancel
these perturbations, we need perceptual coupling which we learn in Section 4.5.
Due to the complexity of the task, Ball-in-a-Cup is even a hard motor task for
children who only succeed at it by observing another person playing1. Subsequently,
a lot of improvement by trial-and-error is required until the desired solution can be
achieved in practice. The child will have an initial success as the initial conditions
and executed cup trajectory fit together by chance, afterwards the child still has to
practice a lot until it is able to get the ball in the cup (almost) every time and so
cancel various perturbations. Learning the necessary perceptual coupling to get the
ball in the cup (almost) every time is even a hard task for adults, as we have verified
by self-experimentation and with other people from our department. In contrast to a

1or deducing from similar previously learned tasks how to maneuver the ball above the cup in such a way
that it can be caught. Humans learn a general hand-eye coordination as well as throwing and catching
strategies, that can be applied to a wide variety of tasks including Ball-in-a-Cup.
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4.4 Learning Ball-in-a-Cup

tennis swing, where a human just needs to learn a goal function for the one moment
the racket hits the ball, in Ball-in-a-Cup we need a complete dynamical system as
cup and ball constantly interact. Mimicking how children learn to play Ball-in-a-Cup,
we first initialize the motor primitives by imitation and, subsequently, improve them
by reinforcement learning in order to get an initial success (this Section). Afterwards,
we also acquire the perceptual coupling by reinforcement learning (Section 4.5).
We recorded the motions of a human player by kinesthetic teach-in in order to obtain
an example for imitation as shown in Figure 4.14 (middle row). Kinesthetic teach-in
means “taking the robot by the hand”, performing the task by moving the robot
while it is in gravity-compensation mode and recording the joint angles, velocities
and accelerations. From the imitation, it can be determined by cross-validation
that 31 shape-parameters per motor primitive are needed. As expected, the robot
fails to reproduce the presented behavior and reinforcement learning is needed for
self-improvement.
Figure 4.13 shows the expected return over the number of rollouts where convergence
to a maximum is clearly recognizable. The robot regularly succeeds at bringing the
ball into the cup after approximately 75 rollouts. Figure 4.15 shows the improvement
of the policy over the rollouts. A nine year old child got the ball in the cup for the
first time after 35 trials while the robot got the ball in for the first time after 42
rollouts.
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4 Evaluations

4.5 Learning Perceptual Coupling

We have applied the presented algorithm in order to teach a physically realistic
simulation of an anthropomorphic SARCOS robot arm how to perform Ball-in-a-Cup
(for a description see Section 4.4). Here we use a different motion, see Figure 4.16(top)
for an illustrative figure. For this evaluation, the state of the system is described in the
Cartesian coordinates of the ball as in Section 4.4 but we use the Cartesian coordinates
of the cup instead of the robot joint angles (i.e., the operational space instead of
the joint space). The actions are the cup accelerations in Cartesian coordinates
with each direction represented by a motor primitive (instead of the accelerations
and motor primitives for the joints). An operational space control law [Nakanishi
et al., 2007] is used in order to transform accelerations in the operational space of
the cup into joint space torques. All motor primitives are perturbed separately but
employ the same joint reward which is exactly the same as in Section 4.4 except the
scaling parameter which we set to α = 10000 for this evaluation as we have to cope
with rollouts that are far off. As mentioned in Section 4.4, a small perturbation of
the initial condition or the trajectory will drastically change the movement of the
ball and hence the outcome of the rollout if we do not use any form of perceptual
coupling to the external variable “ball”.

We recorded the motions of a human player using a VICONTM motion-capture setup
in order to obtain an example for imitation as shown in Figure 4.16(bottom). We
used one of the recorded trajectories for which, when played back in simulation, the
ball goes in but does not pass the center of the opening of the cup and, thus, does not
optimize the reward. This movement is then used for initializing the motor primitives
and determining their parametric structure where cross-validation indicates that
91 shape-parameters per motor primitive are optimal from a bias-variance point of
view. The trajectories are optimized by reinforcement learning using the PoWER
algorithm on the parameters w for non perturbed initial conditions as in Section 4.4.
Also for this motion the robot constantly succeeds at bringing the ball into the cup
after approximately 60-80 rollouts given no noise and perfect initial conditions in
simulation (for this part).

One set of the found trajectories is then used to calculate the mean motion ȳ = (h−b)
and ˙̄y = (ḣ− ḃ), where h and b are the hand and ball trajectories. These correspond
to the positions and velocities of the ball relative to the cup. This set of trajectories
is also used as the standard cup trajectories. For perfect initial conditions and
no noise the robot will perform the learned trajectory, as ȳ = 0 and ˙̄y = 0 the
perceptual coupling will not influence the trajectory. If there are any deviations from
this defined trajectory, the perceptual coupling will move the cup in order to regain
the desired relative positions and velocities. For example, if the ball is a bit to the
right of the desired relative position, the perceptual coupling could compensate by
moving the cup a bit to the right.
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Figure 4.17: This figure shows the expected return of the learned policy in the Ball-in-a-Cup
scenario (averaged over 3 runs with different random seeds and the standard deviation
indicated by the error bars) for a specific test scenario. The convergence is not uniform as
the algorithm is optimizing the returns for a whole range of perturbations and not just for
the test case. Thus, the variance in the return as the improved policy might get worse for
the test case but improve over all cases. Our algorithm rapidly improves, regularly beating
a hand-tuned solution after less than fifty rollouts and converging after approximately
600 rollouts. Note that this plot is a double logarithmic plot and, thus, single unit changes
are significant as they correspond to orders of magnitude.

Hand tuned coupling factors can cope with small perturbations of the initial con-
ditions. In order to make the coupling more robust, we use reinforcement learning
with the same rewards as before. The initial conditions (i.e., both positions and
velocities) of the ball are perturbed completely randomly using Gaussian random
values with variances set according to the desired stability region. We did not use
the PEGASUS Trick of reinitializing the random numbers and, thus, training on a
defined set of initial conditions. For the training we perturbed the initial conditions
of the ball with Gaussian-distributed noise of concurrent standard deviations of
0.01m for x and y and of 0.1 m/s for ẋ and ẏ. The PoWER algorithm converges after
approximately 600-800 rollouts for 13 perceptual coupling parameters per degree
of freedom (Figure 4.17). This is equivalent to roughly 45 minutes of continuous
training for a human player. After a training session of this duration a ten year
old child is usually able to get the ball in the cup almost every time, even with
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4.5 Learning Perceptual Coupling

small perturbations. The learned perceptual coupling manages to perform successful
rollouts for all tested cases where the hand-tuned coupling was also successful. The
learned coupling pushes the limits of the canceled perturbations significantly further
and still performs consistently well for double the standard deviations seen in the
reinforcement learning process. Figure 4.18 shows an example of how the visual
coupling adapts the hand trajectories in order to cancel perturbations and to get the
ball in the cup.
We also learned the coupling directly in joint-space in order to show, that the
augmented motor primitives can handle perception and action in different spaces
(perception in task space and action in joint space, for our evaluation). For each of
the seven degrees of freedom a separate motor primitive is used, ȳ and ˙̄y remain the
same as before. Here we were not able to find good coupling factors by hand-tuning.
Reinforcement learning finds working parameters but they do not perform as well as
the Cartesian version. These effects can be explained by two factors: the learning
task is harder as we have a higher dimensionality. Furthermore, we are learning
the inverse kinematics of the robot implicitly. If the perturbations are large, the
perceptual coupling has to do large corrections. These large corrections tend to move
the robot in regions where the inverse kinematics differ from the ones for the mean
motion and, thus, the learned implicit inverse kinematics no longer perform well.
This behavior leads to even larger deviations and the effects accumulate.
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5 Conclusion

In this diploma thesis, we have presented a new perspective on policy learning
methods and an application to a highly complex motor learning task on a real
Barrett WAMTM robot arm. We have generalized the previous work in [Dayan
and Hinton, 1997, Peters and Schaal, 2007b] from the immediate reward case to
the episodic case. In the process, we could show that policy gradient methods
are a special case of this more general framework. During initial experiments, we
realized that state-dependent exploration allows the derivation of much faster policy
learning methods than the common Gaussian exploration with constant variance.
This resulted in a novel policy learning algorithm, Policy learning by Weighting
Exploration with the Returns (PoWER), an EM-inspired algorithm that outperforms
several other policy search methods on standard benchmarks as well as on a simulated
Underactuated Swing-Up.

We successfully applied this novel PoWER algorithm in the context of learning two
tasks on a physical robot, i.e., the Underacted Swing-Up and Ball-in-a-Cup. Due to
the “curse of dimensionality”, we cannot start with an arbitrary solution as we would
have to try infinitely many solutions. Instead, we mimic the way children learn Ball-
in-a-Cup and first present an example for imitation learning which is recorded using
kinesthetic teach-in or motion-capture. Subsequently, our reinforcement learning
algorithm takes over and learns how to move the ball into the cup reliably. After a
number of rollouts comparable to the learning rate of a ten year old child, the task
can be regularly fulfilled and the robot shows very good average performance.

Perceptual coupling for motor primitives is an important topic as it results in more
general and more reliable solutions while it allows the application of the framework of
motor primitive based on dynamical systems to many other motor control problems.
As manual tuning can only work in limited setups, an automatic acquisition of this
perceptual coupling is essential.

Therefore, we have contributed an augmented version of the motor primitive frame-
work originally suggested by Ijspeert et al. [2002a, 2003], Schaal et al. [2007] in this
diploma thesis such that it incorporates perceptual coupling while keeping a distinc-
tively similar structure to the original approach and, thus, preserving most of the
important properties. The resulting framework works well for learning Ball-in-a-Cup
on a simulated anthropomorphic SARCOS arm in setups where the original motor
primitive framework would not suffice to fulfill the task.
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5 Conclusion

5.1 Future Work

Motor primitives are elemental motions which are described in detail in Section 3.
To date these are mostly used for repetitive tasks. The current formulation of motor
primitives will have to be extended to include a supervisory layer for selection,
sequencing and superposition of motor primitives for accomplishing multiple tasks.
Basic sequencing with linear blending as well as independently superposed motor
primitives are straightforward to implement but in several cases these approaches
will not suffice. For a versatile framework, sequencing and blending should take
into account physical limitations (e.g., impossible movements) and as well allow
optimization according to defined cost functions. For superposition considering the
possibility of mutual influence between several primitives is necessary. The methods
introduced in this diploma thesis will serve to learn the motor primitives for a
“motion library” from which the supervisory layer draws the motor primitives.
The motor primitives also have to be adapted according to external triggers. Here
the focus will lie on the state of the object we want to interact with. Two cases have
to be distinguished: only one single point of the trajectory matters (i.e., the end
point or a via-point) or the whole trajectory has to be adapted. This diploma theses
introduced an augmented version of the motor primitives for the second case. The
presented novel policy learning algorithm PoWER can also most likely be applied to
learn both the mean motor primitives and the mapping of the amplitude and goal
parameters to the desired end point or via-point.
The simplest and fastest learning method is imitation, either observed directly from
a human performer or taught by a kinesthetic teach-in. Depending on the task
a single example is sufficient or several are needed. We want to learn perceptual
coupling directly by observation for simple examples. In order to further improve
performance (this can range from the robot not succeeding in repeating the task
at all to performing a task more efficiently) reinforcement learning will be needed.
Policy gradient and EM like policy learning methods have proven promising, as
shown in this diploma thesis, and shall be examined, extended and developed.
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Abbreviations

In this diploma thesis we use the following mathematical notation throughout this
thesis:

Notation Description
{x1, x2, . . . , xn} set with elements x1, x2, . . . , xn

R real numbers
x = [x1, x2, . . . , xn] a vector
xi the ith component of the vector x
xT transpose of vector
A = [a1, a2, . . . , an] a matrix
ai the ith vector of the matrix A
aij the i, jth component of the matrix A
AT transpose of matrix
A−1 matrix inverse
A+ matrix pseudo-inverse

A
1
2 matrix root
∇θif derivative with respect to parameter θi
∇θf derivative with respect to parameters θi
∂f
∂q

partial derivative

p (x) probability density of x
E {x} expectation of x
x̄ = 〈x〉 sample average of x
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Abbreviations

As symbols in this diploma thesis, the following symbols are used in several sections:

Symbol Description
t time
x, ẋ, ẍ task space position, velocity, acceleration
q, q̇, q̈ joint space position, velocity, acceleration
st state (at time t)
at action (at time t)
s1:T+1 series of states st with t ∈ {1, 2, . . . , T + 1}
a1:T series of actions at with t ∈ {1, 2, . . . , T}
τ = [s1:T+1, a1:T ] rollout, episode, trial
T rollout length
π (at|st, t) policy
T set of all possible paths
rt reward (at time t)
r1:T series of rewards rt with t ∈ {1, 2, . . . , T}
R (τ) return
J (θ) expected return
D (p‖q) Kullback-Leibler divergence
Qπ (s, a, t) value function of policy π
F (θ) Fisher information matrix
ε exploration
H number of rollouts
n index of parameter
k index of iteration
g = ∇θf (θ) gradient
α update rate
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Symbol Description
ψ (·) weights
c centers
h widths
l length
m mass
g gravity
F forces
∆t time step
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